Automated Metadata, Provenance Cataloging and Navigable Interfaces: Ensuring the Usefulness of Extreme-Scale Data

David Schissel, Gheni Abla, Bobby Chanthavong, Sean Flanagan, Xia Lee – General Atomics

Alex Romosan, Arie Shoshani - LBNL

Martin Greenwald, Josh Stillerman, John Wright – MIT

Next-Generation Networks for Science Program PI Meeting March 18-20, 2013 Berkeley, CA

Goal: Support Data Tracking, Cataloging and Integration Across a Large Scientific Domain

- Create a data model, infrastructure, and set of tools
 - Automatically document workflow and data provenance from user scripts or any tools that process data
- For each data element: who, what, when, how, why
 - Connections & dependencies between data elements
 - Human or automated annotation
- Realistic applications starting with Fusion research
 - What scientists do today (Python scripting & MDSplus)
 - Vision: an API that can be applied to any tools used to process or manipulate data (experiments & HPC)

Approach: Focused Research to Build Tools for Real-World Science

- Integrated metadata, provenance & ontology research
 - General data model and conceptual framework
- Research on User Interfaces: Graphical Navigation
 - Efficiently browse and search for discovery of workflows, their components, and associated metadata
- Demonstrate on real-world fusion applications
 - Early deployment & agile development approach
 - Feedback and improve the design
- Extend to other sciences to validate our generality
 - Climate modeling and space sciences

Relationship between Workflow, Provenance, Metadata, and Ontology

- Workflow: specification of actions as DAG structure
 - Directed Acyclic Graph: Logic of tasks performed
- Provenance: automatically generated by the workflow
 - Input/output for each step & relationship between steps
- Metadata: information about each process step
 - Process step can be a code & include documentation
- Ontology: a structure that captures the common terms used to describe object properties in a specific domain
 - Necessary for information search such as provenance

Workflow Primitives

Basic workflow structure

Special workflow structures

Project Divided into 4 Distinct Elements

- Primitives and languages for annotation
 - Useful/realistic for workflow steps data & metadata entry
- Integrating, provenance and workflow documentation
 - Investigate best approaches and technologies
- User interfaces including graphical navigation
 - Display, navigate, interact, browse the metadata catalog
 - Interactively explore data relationships
 - Graphical display to explore workflow and provenance
- Software Suite MPO: Continual deployment/testing
 - Starting with EFIT and Gyro from fusion science

A RESTful API Provides a Robust Interface

REST: Representational State Transfer

Provides database operations through http verbs

- Create=PUT with a new URI
 POST to a base URI returning a newly created URI
- Read = GET
- Update = PUT with an existing URI
- Delete = DELETE

Leverages existing web infrastructure

- URIs are nouns (http:://host/workflow, http:://host/comment)
 defining resources to be created or accessed
- Data server is accessed with standard http queries supported in nearly all languages
- Simple implementation and use (but design is hard)

Clients Manipulate Resources through the RESTful API

- POST /resource, GET resource/:uid
 - /workflow
 - /dataobject
 - /activity
 - /comment
 - /metadata
 - /ontology
- Support for facets of resources and queries
 - GET /workflow/:uid/graph
 - GET /workflow/:uid/alias
 - GET /activity?name=EFIT&user=schissel

Abstract Schema Design

Connectivity:
Repeats and alternates
Data Object sets and Activities as DAGs

UI Vision: Integrated Interface for Accessing all Types of Data in a Scientific Environment

- One intuitive interface to accelerate scientific discovery
 - Data, data analysis methods, interactive vis, collaboration
 - Hypertext based and graphical
- Context enable navigation
 - Search, navigate, interactive access to MPO data
- Graphical navigation
 - Flow chart, flow map, Timeline, Radial Tree map, newsmap, tag-cloud maps
- Dynamic visualizations created from MPO data
 - Real-time feedback

Continual Deployment/Testing Critical to Project's Success

- Early deployment of software for user engagement
 - Provide useful feedback & shorten development lifecycle
- Working prototypes (database/interfaces) to users early
 - Evaluate, revise, & release based on their experience
- Near-term: two fusion codes
 - EFIT (plasma shape) during operations via MDSpus
 - Gyro (large sim code) with results in large file repository
- Longer-term: Additional fusion applications and other sciences

Current RESTful API Supports Workflow Instrumentation

Routes for workflow creation and annotation

- /workflow, /activity, /dataobject, /comment, /metadata
- Each route supports POST for object creation and GET:uid for object retrieval
- Objects are encoded in JSON for POSTing and GETting

```
•POST /workflow
```

BODY: { "name": "GYRO",

"description":"Important ITER run"}

•GET /metadata?work_uid=f20b23ec-aefb-481c-8c08-6443f

Returns: {"target_uid":" f20b23ec-aefb-481c-8c08-6443f",

"key": "Te(kev)",

"value": 3,

"uid": "e1b13f63-97ca-490d-9218-15c8f5cae1d5",

"time": 2013-03-14 19:44:34.235565,

"Uri": http://mpohost/metadata/e1b13f63-97ca-490d-9218-15c8f5cae1d5)}

Command Line Client For Use in Scripts

- Client uses 'meta' command and method names
- Shell scripts and batch scripts can be instrumented
- User can make queries & comments via command line
- Example script or command line session:

```
wid = mpo init --name=EFIT --desc=test`
```

oid = mpo add \$wid --parent=\$wid --name=shot --desc="Plasma shot number" --uri=150335`

oid2 = mpo add \$wid --parent=\$wid --name="Snap file" --desc="EFIT input file" --uri="\\efit01:namelist"\

aid = mpo step \$wid --input=\$oid --input=\$oid2 --name="EFIT exec"

--desc="Fit equilibrium and compute plasma parameters" --uri=EFIT`

cid = mpo comment \$aid "This program is the only one in this workflow"

Initial Schema Implementation

Preliminary Database Schema as Operating Today: Implemented in PostGreSQL but any DB will be Sufficient

Workflow: W_GUID, name, WS_GUID, description, U_GUID (owner), start_time, end_time, completion_status, status_explanation

Data_object: DO_GUID, name, DOV_GUID, W_GUID, description, URI_of_data

Activity: A_GUID, name, AV_GUID, W_GUID, description, URI_of_executable_file, start_time, end_time, completion_status, status_explanation

Workflow_connectivity: WC_GUID, W_GUID, child_GUID (DO_GUID or A_GUID), child_type, parent_GUID (DO_GUID or A_GUID), parent_type

Comment: CM_GUID, name, text, URI_of_comment, comment_type, parent_GUID (any object), parent_type, time_entered

Metadata: M_GUID, key, value, metadata_type, parent_GUID (any object), parent_type, time_entered

Prototype MPO Web Site Operating

© MPO Team 2013

Workflow Graphics Automatically Generated from MPO Data

Goal in the Next Year is to Expand System's Depth as well as Expand the Reach of our Tools

API

Complex queries, Ontology support, fine-grain ACLs

Database System

- Add support for hierarchical ontologies using controlled vocabularies with broader and narrower terms
- Support template structure for workflow, activities, and data-objects
- UI workflow graphic extended to be interactive and graphical views of many workflows
- Extend to at least several new sciences
- Push deeper into fusion science
 - Instrument data input preparation phase

Summary

- Instrumenting existing workflows allowing automation
 - General API and framework for general solution
- Rapid prototyping with real-world fusion problems
 - Quicker feedback and rich datasets to draw upon
- General solution that will extend to other sciences
 - Narrow early focus but with a broad long-term vision
- Validate our approach seek other sciences for testing
 - Are there other projects who might desire to test?

